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On the Topology of the Level Sets of a Scalar Field. 

Valerio Pascucci 

Abstract 

This paper introduces a new simple algorithm 
for the construction of the Contour Tree of a 
3D scalar field augmented with the Betti num- 
bers of each contour component. The algorithm 
has O ( n  log n)  time complexity and O ( n )  auxil- 
iary storage. where n is the number of vertices 
in the domain of the field. The algorithm can 
be applied to fields of any dimension in which 
case it computes the Contour Tree augmented 
onlj, with the Euler characteristic of each con- 
tour. The complexity in any dimension remains 
O ( n  logn). This is the same complexity as in [4] 
but with correct computation of the tree for 
fields with bounded domains. 

1 Introduction 

Scalar fields are used to  represent data  in dif- 
ferent application areas like geographic infor- 
mation systems, medical imaging or scientific 
visualization. 

One fundamental visualization technique for 
scalar fields is the display several isocontours: 
that is sets of points of equal scalar value. For 
example in terrain models isolines are used to  
highlight regions of equal elevation. In medical 
CT scans an isosurface can be used to show and 
reconstruct the separation between bones and 
soft tissues. 

In molecular modeling the simplex represen- 
tation of the interaction energy between two 
molecules is a scalar field defined over a six di- 
mensional configuration space. The six dimen- 
sions are the three translational and the three 

rotational degrees of freedom of the relati1.e po- 
sitions of the two molecules. The isocontours 
of the field represent all the configurations en- 
ergetically equivalent. 

The domain of the scalar field is t?-pically a 
geometric mesh and the scalar field is pro\- idd 
by associating each vertex in the mesh n.ith a 
sampled scalar value. If the mesh is a simpli- 
cial complex then a piecewise linear field is nat- 
urally defined by interpolating lineal-l!.. within 
each simplex, the scalar values at the Awtices. 

The Contour Tree is a graph that represents 
the relations between the connected coinpo- 
nents of the isocontours in a scalar field. Two 
connected components that  merge together (as 
one changes continuously the iso\-alue u - )  are 
represented as a two arcs that  join in a node of 
the graph. The pre-computation of the Contour 
Tree allows to collect structural information rel- 
ative to  the isocontours of the field. This can lie 
used for example to speedup the computation of 
the isosurface [12]. The display [Z] of the Con- 
tour Tree provides the user with direct insight 
on the structure of the field. Extensions beyond 
the 3D case [4] are particularly useful because 
for higher dimensional da ta  [l] the traditional 
rendering schemes are less intuitive. EspeciallJ- 
in those cases the complementary displa?. of the 
Contour Tree would enhance the user interac- 
tion time necessary to "understand" the struc- 
ture of the data. 

One fundamental limitation of the Contour 
Tree is the lack of additional information re- 
garding the topology of the contours. In  high 
pressure chemical simulations [ 101 ~ our applica- 
tion of reference, hydrogen bonds between the 
atoms cannot be represented in a tradition way, 
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but can be characterized by isosurfaces of po- 
tential fields. The Contour Tree provides im- 
portant information regarding the clustering of 
atoms into molecules but fails to  discriminate 
between linear chains and closed rings (or more 
complex structures) that  have different physi- 
cal behaviors. For example the approach in [8] 
computes the Betti numbers of each isosurface 
extracted to characterize explicitly its topol- 
ogy. Computationally such an approach be- 
comes very expensive since it requires the ex- 
plicit computation of the isosurface itself. If 
applied as a preprocessing stage to precompute 
all the Betti numbers of all the isocontours in a 
scaIar field, it would have O(n2) complexity. 

The first efficient technique for Contour Tree 
computation in 2D was introduced by de Berg 
and van Kreveld in [5]. The algorithm proposed 
has O ( n  log n) complexity. A simplified version 
with same complexity in 2D and O(n2)  com- 
plexity in  higher dimension was proposed by 
van Kreveld et al. in [la]. This new approach is 
also used as a preprocessing for an optimal iso- 
contouring algorithm. It computes a small seed 
set from which any contour can be tracked in 
optimal running time. In the extended version 
of this paper [12] we also prove a lower bound of 
O(n1ogn) for the computation of the Contour 
Tree (by reduction to sorting) which shows the 
optimality of the O ( n  log n)  complexity. The 
approach has been improved by Tarasov and 
Vyalyi [ 1 11 achieving 0 ( n  log n) complexity in 
the 3D case by a three pass mechanism that 
allows to resolve the different types of criticali- 
ties. Recently Carr, Snoeyink and Axen [4] pre- 
sented and elegant extension to the general di- 
mensional case based on a two pass scheme that 
builds a merge-tree and a split-tree that are suc- 
cessively composed into a unique Contour Tree. 
The approach achieves optimal O ( n  logn) time 
complexity in any dimension. 

This paper introduces a new algorithm for 
the construction in 3D of an augmented Con- 
tour Tree where each arc of the tree is associ- 
ated with the Betti numbers of each contour. 

Lawrence Livermore National Laboratory 

The first Betti number PO of a mesh. i n  this 
case the isosurface, is the number of connected 
components of the mesh. The second number  
,B1 is the number of tunnels of the mesh. The 
third P2 is the number of voids enclosed in the 
mesh. With the Betti numbers one prol.ides a 
complete topological characterization of all the 
isosurfaces. The algorithm provides this addi- 
tional topological information within the opti- 
mal O ( n  log n) computation time. The esten- 
sion to higher dimensions only computes the  
Contour Tree (not augmented with the Betti 
numbers) maintaining the same O ( n  log n )  corn- 
plexity. This is the same complexity as in [ A ]  
but in a more robust framework. The presence 
of (‘special cases” like multiple vertices wi th  t h e  
same function value or open isocontours clue 
to a bounded domain are handled unifornil!-. 
In particular note that the solution proposed 
in 141 to add a layer of constant values aroilnti 
the mesh has the undesired effect of arbitraril>- 
merging different components of the isocontour 
as shown in Figure 1. This modifies the Con- 
tour Tree making it unsuitable for example for 
the computation of seed sets (we plan to I W  

it in combination with the approach proposed 
in [3]). This modification of the Contour Tie(> 
can provide partially misleading informat ion t C) 

the user if displayed in an graphical interface. 

2 The Contour Tree 

Consider a scalar field 3 defined as a pair 
(f,  Ad), where f is a real valued function and .\I 
is the domain o f f .  In the following the domain 
mesh A4 is assumed to be a simplicial comples 
with n vertices {q,. . . , n,}. The function f is 
restricted within each simplex o E h/l to be 
the linear interpolation of the values ai the ver- 
tices. In other words the field 3 is complete1)- 
defined by the mesh M and the set of scalar 
values { f l , .  . . ,fn} where fz = f ( v , ) .  Sincp .\I 
is connected (or processed one connected com- 
ponent at a time) the range of f is a simplc 
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Figure 1: (a) A 2D scalar field with its Contour 
Tree on the right. The contours of the level set 
of isovalue w are displayed in thick solid lines. 
(b-c) Two possible modifications of the scalar 
field and Contour Tree due to the insertion of 
an outer layer of uniform values. 

closed interval T = [fmtn,fmaz] with fmin  = 

For simplicity of presentation A4 is also as- 
sumed to  be a d-manifold with boundary (aM 
is a (d-1)-manifold) homeomorphic to a d-ball. 
This assumption holds in most practical cases 
and technically can be removed (making the fol- 
lowing discussion more complicated). 

One fundamental way to study the field 3 
is to  extract its level sets. For a given scalar w 
the level set L(w) of isovalue tu is defined as the 
inverse image of w onto PI through f: 

min{j1,.. .1fn} and fmaz =max{f i , . . . , f n} .  

L(w) = j-'(w). 

We call each connected component of the 
level set L ( w )  a contour. One aspect that  is 
well understood in Morse theory [9] is the evolu- 
tion of the homotopy types of the contours of 3 
while w changes continuously in T .  The points 
at ivhich the topology of a contour changes are 
called critical points and are assumed to be iso- 

La wren ce L i w  erm o re National Laboratory 

lated. This assumption is not satisfied in gen- 
eral but can be enforced by a small perturbation 
of the function values { j l ,  . . . , fn}. This pertur- 
bation procedure is here weakened by simplj- as- 
suming that the { f l , .  . . , fn} are sorted from the 
smallest to the largest so that i < j 3 ft 5 fj. 
This can be enforced with an O(n1ogn) pre- 
processing. In the following the order of the fl 
is used to resolve non-isolated criticalities using 
the concept of filtration as in [6]. 

We follow the notation of [4] and define the 
Contour Tree as a graph 7 whose 1-ertices 
are associated each with a function 1-alue f l  

and whose connectivity represents the relation 
among the contours of 3 as follows. 

0 Each leaf of 'Trepresents a local estremuni 
where a contour is created or destro~-ed. 
for continuous changes of w .  The function 
value of the extremum is associated wi th  
the leaf nodes of 7.  

0 Each interior vertex of Trepresents the 
merging and/or splitting of two or inore 
contours for continuous changes of 11'. The 
function value at which a split/merge oc- 
curs is associated with the node. 

0 Each arc of 7 represents a co~itour t I i < ~ t  
remains isolated for w ranging betn.ecn 
the function values associated wi th  tlic cs- 
tremes of the arc. 

Figure 2 shows a 2D scalar field with the as- 
sociated Contour Tree. Note that the Contour 
Tree is not a complete Morse graph of F since 
the topological changes of a single contour are 
not recorded. A more intuitive way to charac- 
terize the Contour Tree is the following irifornial 
definition: 

Definition 1 The Contour  Tree of F zs t h e  
graph obtained b y  contracting each contour  of 
3 to  a single poznt. 

In the following we show how t h p  Con- 
tour Tree can be efficiently computed anti aug- 
mented in 3D with the complete topological 

3 
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value. In this stage a set of “merge sim- 
plices” are marked. 

Sweep 2. The mesh is processed from mini- 
mum function value to  maximum function 
value. In this stage the Contour Tree is 
constructed and the Betti numbers of all 

18 16 4 the contours are reported. 
5 /  \ 4  

Figure 2: (a) 2D triangular mesh with the con- 
tours of the saddles. (b) Corresponding contour 
tree. 

information of each contour. In particular we 
mark each arc of the tree with the Betti num- 
bers of the corresponding component specify- 
ing if it is open or closed and the number of 
its tunnels. This implies that  additional nodes 
are added to  7 dividing each arc a t  the critical 
points where the topology of the corresponding 
contour changes. For example the event of a 
contour changing its topology from a sphere to 
a torus would not be noted in the basic Con- 
tour Tree but is registered in this augmented 
Contour Tree. 

3 Construction of the Con- 
tour Tree 

Thissection discusses the algorithm for the con- 
struction of the augmented Contour Tree. We 
first give an outline of the approach, and pro- 
vide the details in the following subsection. 

3.1 Algorithm Outline 

The algorithm used to  build the augmented 
Contour Tree is based on two successive sweeps 
of the data (after sorting the vertices by func- 
tion value). 

Sweep 1. The mesh is processed from maxi- 
mum function value to minimum function 

The idea is to  build a filtration of the do- 
main mesh M such that  processing the sim- 
plices in the filtration order is equivalent to 
sweeping the level sets of 3. Once this goal 
is achieved one can define the set of simplices 
where contours merge and apply the original 
Contour Tree construction scheme in [12] main- 
taining optimal O ( n  logn) running time in an!- 
dimension. Because the second sweep actuallj- 
tracks the topology of the contours one is also 
able to  determine their Betti numbers witliout 
penalty on the running time complexit!.. 

3.2 Conceptual Mesh Decomposi- 
tion 

This section introduces a convenient way to  de- 
compose the domain mesh into a set of conves 
cells. Such a decomposition does not need to 
be computed explicitly but represents a good 
way to reason about the sweep procedure that 
is performed for increasing/decreasing values of 

Consider the sorted set of function values 
{f l , .  . . , fn} defined at the vertices of the mesh. 
We know that: 

W .  

Each edge of the mesh is divided at  
its midpoint v i j .  Consider a k-simplex 0 E 
M. The global ordering of the vertices in- 
duces on the vertices of the simplex the order 
(zlio, . . . , vik) .  cr is partitioned into k + 1 convex 
cells by slicing with k hyperplanes (k-1-flats) as 
follows. For each j E (0 , .  . , , X: - 1) partition 
the vertices of 0 into two sets V’ = {vi,, , . . . , ql } 

4 
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than w and the set of those with function 
value smaller than w. The set V, is the set of 
vertices of M' that  split an edge of A4 having 

V I  " 1  one extreme in and one extreme in L i .  Th? 
( 8 )  (al) C.2) (a3) complex M w  is the set of cells in M' that  ha1.e 

all the vertices in Vc and is homeomorphic to 

to  the actual interpolation points along the 
edges of M then M" is deformed to become 
coincident with f-'(w) without any structural 

v4 
t f-'(w). In fact if the vertices of Ad" are moved 

4 
"3 i ~ , y 1  

V I  modification. 0 
(b2) 

The order of the vertices of the mesh AI' is 
derived from the order of the vertices of 111. In  
particular the original vertices of Af maintain 
the same relative order but are interleaved wi th  
the new ones. Consider a vertex 'u, and the set 
of all the vertices vjl,  . . . , vjk connected to  1 I 

with an edge of M and such that i < j1 < . . < 

v 2  
v 1  

,w7. 

u1 

(b4) 

jk. The ordered vertices of M' will contain the  
subsequence {vi, wi , j l  I . . . ) 'uZ,jk, vi+l}. That  is r ,  
is immediately followed by the vertices intro- 
duced on the edges incident both to zi, and to a 

Figure 3: (a) Decomposition a triangle into 
three convex cells (al-a3). (b) Decomposition 
of a tetrahedron into four convex cells (bl-b4). 

vertex of index greater than i. Notice that this 
is a unique canonical order derived from the or- 
der of the vertices of M. 

and V' = {vi,+,) . * . 7  % 1. It is easy to  see 
that the set of midpoints ~ h , k  with vh € v' and 
vk E 1'" span a (Ic-1)-flat. This (k-1)-flat is used 

3.3 Critical Points? No Thanks to divide the simplex. Figure 3(a) shows the de- 
composition of a triangle into three convex cells 
show in gray in (al>,(aZ) and (a3). The same 
detomposition procedure for a tetrahedron is 
shon-n Figure 3(b), where the resulting convex 
gray regions are (bl),(b2),(b3) and (b4). 

Since each simplex has been decomposed into 
a constant number of pieces this new mesh M' 
has size U ( n ) .  The mesh M' has the following 
additional property: 

Theorem 1 For any  isovalue w E 
~ \ { f l ; .  . . , j n }  there is a subcomplex M" 
of Jf' that is homeomorphic t o  the level set 

The main characteristic of the approach pro- 
posed here is the construction of the Contour 
Tree performed without resolving explicitly the 
criticalities of the field. The classification of 
the critical points is replaced with the filtration 
technique used in [6 ] .  That  is the characteri- 
zation of a point as critical is derived from its 
effect on the topological structure of the con- 
tours as w crosses its function value. 

Definition 2 A filtration is a sequence ofsirn- 
plicial complexes where every complex is (L 

L(v*) of 3. 

Proof: Since w {fl, . . . ) fn} one can 
partition the vertices of the original mesh in 
the. set V, of those with function value greater 

proper subcomplex of its predecessor. 

Given the subdivided mesh M' defined i n  the 
previous section we define a filtration by order- 
ing all the cells in M' in a sequence. Note that 

5 
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in the following it is not necessary for MI t o  
be a'simplicial complex, but one can reduce to 
that case by applying a canonical decomposi- 
tion to all its convex cells. The sequence S of 
cells in MI is called the jifilter of the filtration. 
Each prefix of S is a complex in the filtration. 

We use the order of the Vertices of MI, as 
defined at the end of the previous subsection, 
to define the filter as follows. The filter 5 is 
built incrementally in dimension by inserting 
successively the simplices of increasing dimen- 
sion. Initially S contains only the sequence of 
vertices of MI. 

Step A. In general consider the cells of dimen- 
sion k .  The k-cells are sorted by considering the 
indices of their faces already in S. The cell a 
precedes the cell b if the largest indes of a facet 
of a is smaller than the largest index of a facet 
in 6. Ties are broken by looking at  the second, 
third, etc. largest face index in the cell (two 
Ic-cells must differ for at least one face). 

Step 8. After the sorting the k-cells are 
grouped by equal largest index of their faces. 
If the (k-1)-cell a already in the filter S is im- 
mediately followed by b then the group of k-cells 
that have a as face of largest index is inserted 
in 5 between a and b. 

Steps A and B are repeated d times for IC = 
1,2 ,  . . . , d until all the cells of M' are in S. If S 
has m elements we call Si, with i = 1, . . . , m the 
prefix of its first elements. M: is the complex 
containing all the simplices in Si. The sequence 
of the Mi, with i = 1,. . . , m is the desired fil- 
tration. 

Theorem 2 For any isovalue w E 
r\{fi,. . . , f,,} there is an integer i such 
that the complex 3M: contains every contour 
in L(w). 

Proof: Call j the index in S of the first 
vertex with function value greater than w. 
We choose i = j - 1. It  easy to see that 

aMi contains the subcomplex of M' used in  
the proof of Theorem 1. In particular the 
difference between 3Si and L(w) is an eventual 
set of boundary faces of M'. In other words 
L(w) = aMZ\ahf'. 0 

Processing the filtration is equivalent to 
sweeping the data with the level set L(u;): with 
w that changes continuously from fmin to fmal:.  
The main advantage is that the filtration auto- 
matically splits the events in simple split merge 
operations. Note that we do not need to iden- 
tify eventual multiple/degenerate criticalities 
since they are resolved incrementally by the or- 
der of the simplices in the filter. Moreover since 
we are looking at contours of non-critical 1-dues 
of w we have no particular problem in dealing 
with the boundary effects. 

Proposition 1 Any contour C of isovnlue 11' E 
r\{fl, .  . . , fn} is a (d-1)-manifold possibly zuith 
boundary. 

Proposition 2 Any contour C of isovalue (L' E 
r\{ f i l  . . . , fn} partitions A4 into two connected 
regions . 

Call f'(w) the region of A4 where the field f 
is greater than w: 

Proposition 3 Consider the eflect of increas- 
ing continuously the isovalue 20 from wa t o  t t i b .  

with wa,wb E r\{ fl, . . . , fn}. If two contours 
merge together then for decreasing isovalue w 
from wb to w, there are two connected compo- 
nents of f'(w) that merge together. 

This property applied to the filtering justifies 
the equivalence between the first pass of the 
Contour Tree computation algorithm [4] and 
the first pass of the Betti number computation 
algorithm [6]. The only difference is that the 
latter identifies also the facet at which two con- 
t.ours merge together. 

6 
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Figure 4: Sweep of the mesh Ad with a hyper- 
plane w = const 

3.4 Algorithm Details 

As mentioned in the outline, the algorithm is 
based on two sweep stages. Each sweep is equiv- 
alent to processing the filter S in direct order 
or in reverse order. 

Sweep 1. First of all we note that the de- 
composition M‘, and hence the filter S, does 
not need to be constructed explicitly. The data 
is instead swept maintaining only the level set 
L(w) while w is changed continuously as shown 
in Figure 4. The vertices of each level set are 
approximated by the midpoints of the edges of 
M .  Each step in the sweep operation consists 
in moving one vertex of M from “below7’ L(w)  
to “above” L(w) .  The vertices are moved in 
the order defined initially with the sorting. I t  
is easy to  see that this sweep operation is equiv- 
alent to the incremental processing of S as long 
as instead of computing the contours at the crit- 
ical points we simply add the new simplices ac- 
cordingly to the order of the vertices in M’. 

In this way we can perform a first sweep from 
fmaz to  fmin as in [6] by traversing the adja- 
cency graph (dual graph) of the d-simplices of 
M we determine (like in a union-find) what vol- 
umes merge. We then mark the facets where the 
actual merge occurs. Since we do not build M’ 
explicitly we mark one vertex in the facet since 
it corresponds to one facet in M’. 

Sweep 2. The second sweep is performed ill 

the same way but from fmin to f m a z .  In this 
sweep we determine with a direct test u.hat 
components we are merging (like in a union- 
find) by attributing one name to  each compo- 
nent and verifying if the new simples n-e in- 
sert connects two simplices with different name. 
From the information collected in the prei-ious 
sweep we know what contours split. Since n e  
know also at what cell the actual split occurs 
we can perform the tandem search as i n  [I?] to 
determine efficiently what components n-ill re- 
sults after the split. In particular as the facet 
c marked in the first sweep is inserted in t h e  
current L ( w )  then we have two contours tha t  
are separated everywhere other than the shared 
facet c. Starting from c we can traversc rlic r n n  
contours doing one step on each of then1 alter- 
nately. As soon as the the smaller coiitoiir is 
traversed completely the tandem traversal stops 
and the cells of the small contour are tra\-ersed 
again to be assigned a new name. The fact 
that  in each split operation we perforrii work 
proportional to the smallest contour guarantees 
that  the amortized cost of the split operations 
is globally O(n1ogn). 

3.5 Tracking the Betti Numbers 

Since we traverse and maintain the lel-el sets 
L(w) we also have the opportunity to count 
the number of the simplices of any dimension 
that they contain. In particular in 3D we count 
the number of vertices, edges and triangles i n  
each contour. Moreover we count the number 
of boundary edges. 

Each contour is by definition one corinected 
component of L(w), so its first Betti number J0 
is 1. 

The last Betti number f ~ 2  is 0 if the number of 
boundary edges is greater than 0 (one open sur- 
face). Otherwise the contour is a closed surfacp 
with = 1. 

is be computtd 
as in [8] from the linear equation given I)!. t h e  

The second Betti number 

7 
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Euler number of the surface: 
d d 

i=O i = O  

where vi is the number of i-cells in L(w). 
During the second sweep we determine from 

this equation the current vale of ,& so that  
each contour is completely characterized topo- 
logically. Notice that this allows to determine 
indirectly what are the additional critical points 
of the field that do not cause the merge or split 
of any contour. 

4 Non-manifold 
Domains 

Complex 

One can deal with domains having non-simple 
topology and non-manifold features. If the 
topology of the domain is not as simple as a d- 
ball then two contours can split for increasing w 
even if no two components of f+(w) merge for 
decreasing w (see for example Figure 5). In this 
case Proposition 3 is not true. Moreover non- 
manifold structures of the domain make it pos- 
sible for two contours to merge/split at  a sim- 
ples that is not a (d-1)-face of hl'. To deal with 
these cases one has to  modify the first sweep 
stage such that in the incremental processing 
of the filter S the actual contours (or unions of 
them) are maintained t o  determine the merge 
simplices. Still one can mark one simplex as 
the simple connection between two contours so 
that it can be used as the starting element of 
the tandem search. 

5 Betti Numbers at Critical 
Points 

Until now we have characterized all the con- 
tours but those that are part of a level set 
L(w) with w = fi and i E (1,. . . ,n}. Even if 
{fl, :. . , fn} is a set of measure 0, one may still 

Figure 5: Level sets computed for a toroidal 
domain. One component of the level set L(wo) 
that  splits into two components at L(wl)  with- 
out merging of two regions of f+(w) from ti' = 
w1 to  w = wo. 

be interested in knowing the topological char- 
acterization of one contour for exactl? LC = j r  
for i E { 1, . . . , n}. This needs some additional 
computation if fi is the function value at H crit- 
ical point. In particular we use the following 
fact. 

Proposition 4 The level set L(w) zh u tlcfor- 
mation retract of the region f- '([w - E ,  ii' I c ] )  
if w is the only critical value an the ziitrrixl 
[w - E , W  + E ] .  

In other words L ( w )  has the same homotop!- 
type of f-'([w - E ,  w + €1). ConsequentIJ- TW 

can compute the Betti numbers of the latter i n  
place of the former. This is easily accomplished 
using a subset of the filter S. 

Call j ,  the index in S of the first vertex of 
A4 with function value equal to fi, and j 2  t h e  
index in S of the first vertex of M with func- 
tion value greater than fi. We use the sub-filtei 
S' =S2z-1\S31-1 to build a filtration. The first 
complex in the filtration is the subcomples of 
M' that  is homeomorphic to L ( w  - E ) .  This is 
the complex that we normally track during the 
second sweep of the Contour Tree construction 
algorithm. The following complexes in the fil- 
tration are built by adding the cells of S' one by 
one. S* is traversed twice. The first traversal 
allows to determine which cell is going to merge 
with which contour of L(w - E ) .  The second 
traversal is performed one component at a t iriie 

and is equivalent to the second pass of the Betti 
number computation algorithm [6]. In this way 

8 
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we determine the Betti numbers of each compo- 
nent of f-'([w - E ,  w + E ] ) .  The initialization of 
the Betti numbers is done using the Betti num- 
bers of each component of L(w-E)  as computed 
before. ACM Press. 

challenge in simplicity (color plate p.  172).  
In Proceedings of the 1998 Symposium o n  
Volume Visualization (VOLVIS-98). pages 
95-102, New York, October 19-20 199s. 

6 Conclusions 

In this paper we have introduced a new effi- 
cient algorithm for the pre-computation of all 
the Betti numbers of all the contours in a scalar 
field. The algorithm generates the Contour 
Tree structure augmented with the combinato- 
rial characterization of each contour. The run- 
ning time is U(n1ogn) which is optimal for the 
computation of the Contour Tree alone. 

The key novelty of the scheme is the use of 
the concept of filtration for tracking the topo- 
logical changes of the contours in a mesh. This 
will allow to apply the thoery of topological per- 
sistence [7] to  scalar fields. As a consequence we 
plan to obtain a sound definition of a hierarchi- 
cal Contour Tree to  use as a basis for a mul- 
tiresolution representation of the corresponding 
scalar field. 
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